Pemodelan Kasus Covid-19 di Jawa Timur Menggunakan Metode Generalized Poisson Regression dan Negative Binomial Regression

نویسندگان

چکیده

Virus SARS-CoV-2 atau juga dikenal sebagai COVID-19, pertama kali ditemukan di China pada akhir 2019 dan telah menyebar secara global menyebabkan lebih dari 178 juta kasus terkonfirmasi sebanyak 3,9 jiwa meninggal dunia. Untuk Jawa Timur sendiri hingga bulan Januari 2022 jumlah yang terpapar virus COVID-19 mencapai 402.879 jiwa, sedangkan sembuh 371.745 dunia 29.774 jiwa. Analisis regresi menggunakan variabel dependen acak kontinu untuk menganalisis data. Sedangkan Regresi Poisson merupakan model dengan Y berdistribusi Poisson. Namun dalam asumsi sering dilanggar antara estimasi varians berada atas mean (over-dispersion) awah (under-dispersion). Salah satu digunakan menangani under-dispersi over-dispersi ini yaitu Generalized Regression Negative Binomial Regression. Data akan meramalkan korban data harian Oktober 2020 sampai 2022. Proses analisis dilakukan software RStudio faktor diduga mempengaruhi yaitu, aktif, baru, Stringency Index, Bed Occupancy Rate Provinsi Timur. Penelitian diharapkan dapat membantu Satuan Tugas pengambilan kebijakan mengantisipasi pasien berdasarkan – berpengaruh signifikan penelitian menambah wawasan mengenai –faktor apa saja sehingga masyarakat bisa waspada lagi masa pandemi ini. Hasil menunjukan bahwa terbaik adalah Hal ditunjukan nilai -2logL, AIC, BIC kecil daripada poisson Dengan faktor-faktor terhadap Rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handling Overdispersion with Negative Binomial and Generalized Poisson Regression Models

In actuarial hteramre, researchers suggested various statistical procedures to estimate the parameters in claim count or frequency model. In particular, the Poisson regression model, which is also known as the Generahzed Linear Model (GLM) with Poisson error structure, has been x~adely used in the recent years. However, it is also recognized that the count or frequency data m insurance practice...

متن کامل

Negative binomial and mixed Poisson regression

A number of methods have been proposed for dealing with extra-Poisson variation when doing regression analysis of count data. This paper studies negative-binomial regression models and examines efficiency and robustness properties of inference procedures based on them. The methods are compared with quasilikelihood methods. RESUME Plusieurs mkthodes ont ktk propokes en vue de traiter le probltme...

متن کامل

Zero inflated Poisson and negative binomial regression models: application in education

Background: The number of failed courses and semesters in students are indicatorsof their performance. These amounts have zero inflated (ZI) distributions. Using ZI Poisson and negative binomial distributions we can model these count data to find the associated factors and estimate the parameters. This study aims at to investigate the important factors related to the educational performance of ...

متن کامل

Performance of Generalized Poisson Regression Model and Negative Binomial Regression Model in case of Over-dispersion Count Data

This paper represents the comparison between Negative Binomial Regression model and Generalized Poisson Regression model for over-dispersion count data. For this comparison, we used BDHS 2007 data in where the response variable is the total children ever born which is a count data. When the response variable is count, then Poisson Regression Model as a Generalized Linear Model is widely and pop...

متن کامل

Estimation of Count Data using Bivariate Negative Binomial Regression Models

Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Sains dan Seni ITS (e-journal)

سال: 2023

ISSN: ['2337-3520']

DOI: https://doi.org/10.12962/j23373520.v11i6.91211